PULMONARY REGURGITATION

ETIOLOGIES

- Dilatation of valve ring secondary to pulmonary hypertension or dilation of pulmonary artery
- Endocarditis
- Surgical treatment of congenital PS
- Surgical treatment of Tetralogy of Fallot
- Congenital valve anomaly: absent, malformed, fenestrated or supernumerary leaflets
 - Associated with TdF, VSD, PS
- Rare: trauma, carcinoid, rheumatic involvement, injury due to PA catheter, syphilis

CLINICAL PRESENTATION

- Isolated PR cause RV volume overload
- Complicated eventually by pulmonary hypertension = RV failure
- Septic pulmonary emboli and pHTN in endocarditis

PHYSICAL EXAM

- RV Hyperdynamic – palpable systolic pulsations in left parasternal area, lift
- Enlarged PA – systolic pulsations of 2nd left intercostal space
- Auscultation
 - P2 2nd to pulmonary hypertension
 - Absent in congenital absence of pulmonary valve
 - Wide split of S2
 - Nonvalvular systolic ejection click 2nd pulmonary artery expansion – midsystolic murmur in 2nd LICS
 - S3 and S4 in 4th LICS, ↑ with inspiration
 - Diastolic murmur without pHTN
 - Low pitch
 - 3-4th LICS, near sternum
 - 0.04s after P2
 - ↑ with inspiration
 - Graham-Steel murmur: annular dilation 2nd to pulmonary HTN (PAPs > 55 mmHg)
 - High pitch
 - Decrescendo
 - After P2
 - 2-4th LICS
 - Loud P2 or fused S2
 - Ejection sound
 - Systolic murmur of TR
 - Low frequency presystolic murmur (flow across tricuspid valve – rare)
 - ↑ Inspiration
 - ↓ Valsalva

ELECTROCARDIOGRAPHY
- RV diastolic overload (rSr or rsR in precordial leads)
- RV hypertrophy in presence of pulmonary hypertension

CHEST X-RAY

- Enlarged PA
- Enlarged RV

ECHOCARDIOGRAPHY

- Doming of the leaflet
- Hypoplasia, dysplasia or absence of the valve
- Dilatation of the pulmonary artery, RA, RV
- In absence of pulmonary hypertension, systolic dysfunction and dilatation of RV is an indirect sign of significant pulmonary regurgitation (volume overload)

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary valve</td>
<td>Normal</td>
<td>Normal of abnormal</td>
<td>Abnormal</td>
</tr>
<tr>
<td>RV size</td>
<td>Normal</td>
<td>Normal of dilated</td>
<td>Dilated</td>
</tr>
<tr>
<td>Jet size by color Doppler</td>
<td>Thin</td>
<td>Intermediate</td>
<td>Large, wide origin and brief duration</td>
</tr>
<tr>
<td>Jet density - CW</td>
<td>Soft, slow deceleration</td>
<td>Dense</td>
<td>Dense, steep deceleration, early termination of diastolic flow</td>
</tr>
<tr>
<td>Pulmonary systolic flow - PW</td>
<td>Slightly increased</td>
<td>Intermediate</td>
<td>Increased</td>
</tr>
</tbody>
</table>

CMR: important role – PA dilation, quantify PR severity, RV dilation and systolic function

MANAGEMENT

- PR alone requires specific treatment
- PVR – pulmonary allograft is preferred
- Treat underlying cause of pulmonary HTN – will ameliorate the PR
Content of this summary from these references: